AG Series Automotive Grade General Purpose Low Resistance Thick Film Chip Resistors Version. A

FEATURE

- AEC-Q200 qualified
- High stability and reliability
- Low resistance value down to $10m\Omega$.
- RoHS complaint.
- Compatible with reflow and wave soldering type
- Applications:
 - Automotive electronics, such as multimedia entertainment, vehicle navigation, audio control unit
 - Electric door and window, electric seat control unit
 - Reversing radar
 - Automotive lighting and control unit
 - Consumer electronics
 - etc.

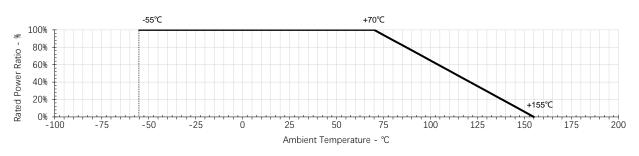
MANUFACTURER PART NO.

For example: AG1206F0R01T5G00-AG1206 $\pm 1\%$ 10m Ω T/R-5000 Nominal Resistance Value PKG Series Size Tol. 2 codes 4 codes 1 code 2~5 codes 1 code 1206 0R01 AG F Т 0603 0R01^{⁽¹⁾=0.01Ω, 10mΩ} T=T/R^a Automotive Grade F=±1% General Purpose Low Resistors Thick 0805 =±5% 0R47=0.47Ω, 470mΩ 1R=1Ω, 1000mΩ 1206 Film Chip Resistors 1210 2010 2512

SPQ	realure	ICK
1 code	1 code	2 codes
5	G	00
4=4K 5=5K	G=Std. S=P.C.®	00=Refer to table as below.

Note: (1) R=Radix, 10° , Ω ② T/R=Taping in Reel package type

③ P.C.=Personal and Customized.


CHARACTERISTICS

Туре	Rated Power	Max. Rated Current	Max. Overload Current	Tolerance	TCR (PPM/°C)	Resistance Range	
					±1500PPM/°C	10mΩ≤R≤30mΩ	
AG0603	AG0603 1/10W	3.16A	7.90A	±1%/±5%	±1000PPM/°C	30mΩ < R≤50mΩ	
					±800PPM/°C	50mΩ < R < 1000mΩ	
		5.00A	12.5A	±1%/±5%	±1500PPM/°C	10mΩ≤R≤15mΩ	
AG0805	1/4W				±1000PPM/°C	15mΩ < R≤30mΩ	
AG0605					±800PPM/°C	30mΩ < R≤100mΩ	
	1/8W	1.11A	2.79A	±1%/±5%	±800PPM/°C	100mΩ < R < 1000mΩ	
				±1500PPM/°C	10mΩ≤R≤15mΩ		
AG1206	1/3W	5.77A	14.43A	±1%/±5%	±1000PPM/°C	15mΩ < R≤30mΩ	
AGIZUU					±800PPM/°C	30mΩ < R≤100mΩ	
	1/4W	1.58A 3.95A		1.58A 3.95A ±1%/±5% ±800PPM/°C		100mΩ < R < 1000mΩ	
				±1500PPM/°C	10mΩ≤R≤15mΩ		
AG1210	AG1210 1/2W	7.07A 17.67A ±1%/±5% ±1000PPM/°C ±800PPM/°C	17.67A	17.67A ±1%/±5%	7.07A 17.67A ±1%/±5%	±1000PPM/°C	15mΩ < R≤30mΩ
					±800PPM/°C	30mΩ < R < 1000mΩ	
AG2010 3/4W				±1500PPM/°C	10mΩ≤R≤15mΩ		
	3/4W	3/4W 8.66A	21.65A	±1%/±5%	±1000PPM/°C	15mΩ < R≤30mΩ	
					±800PPM/°C	30mΩ < R < 1000mΩ	
		1W 10.00A 25.00A			±1500PPM/°C	10mΩ≤R≤15mΩ	
AG2512	1W		±1%/±5%	±1000PPM/°C	15mΩ < R≤30mΩ		
					±800PPM/°C	30mΩ < R < 1000mΩ	

Automotive Grade General Purpose Low Resistance Thick Film Chip Resistors Version. A

POWER DERATING CURVE

RATED VOLTAGE

The resistor shall have a Rated Current which would be DC or AC corresponding to the Rated Power, and it can be calculated by formula as below.

The Rated Current of certain resistance value should be the calculated result or Max. Working Current of product series whichever less.

Formula:

$$I = \sqrt{P/R}$$

I=Rated current (A) P=Rated power (W) R=Nominal resistance (Ω)

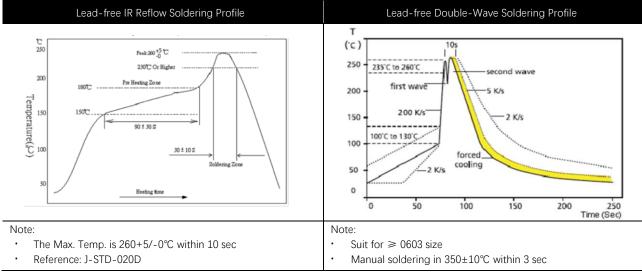
DIMENSIONS

					l	Jnit: mm
Figure	Туре	L	W	Н	А	В
.A.	AG0603	1.60±0.10	0.80±0.10	0.45±0.10	0.30±0.20	0.30±0.20
B ¹	AG0805	2.00±0.15	1.25±0.15	0.55±0.10	0.40±0.20	0.40±0.20
	AG1206	3.10±0.15	1.55±0.15	0.55±0.10	0.45±0.20	0.45±0.20
	AG1210	3.10±0.10	2.60±0.20	0.55±0.10	0.50±0.25	0.50±0.20
w	AG2010	5.00±0.10	2.50±0.20	0.55±0.10	0.60±0.25	0.50±0.20
	AG2512	6.35±0.10	3.20±0.20	0.55±0.10	0.60±0.25	0.50±0.20

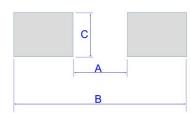
RELIABILITY

Item	Test Method	Acceptable criterion
High Temperature Exposure	Put the specimens unpowered in test environment at +155°C for 1,000 hours, then take them out to measure the resistance value change rate. Reference: AEC-Q200 Test 3, MIL-STD-202 Method 108	1% series: △R/R=±1.0% 5% series: △R/R=±2.0%
Temperature Cycling	Put the specimens in test environment, rise temperature from -55°C to +125°C with speed 10~20 °C per minutes, then stabilize for 15 minutes, define these steps as a cycles, totally 1000 cycles. Finally, take them out to measure the resistance value change rate. Reference: AEC-Q200 Test 4, JESD22 Method JA-104	△R/R=±1.0%
Biased Humidity	Put the specimens applied 10% of rated power in test environment at 85°C and 85%RH for 1000 hours. then take them out to stabilize for 24 hours and measure resistance value change rate. Reference: AEC-Q200 TEST 7, MIL-STD-202 Method 103	1% series: △R/R=±2.0% 5% series: △R/R=±3.0%
Operational Life	Condition D Steady State T_A =+125°C. Put the specimens applied rated voltage in test environment, the maximum rated temperature and rated voltage for the dielectric employed shall be used. Set up 90 minutes power on and 30 minutes power off as a group, totally 1000 hours. Then take them out to stabilize for 24±4 hours and measure the resistance value change rate. Reference: AEC-Q200 Test 8, MIL-STD -202 Method 108	1% series: △R/R=±2.0% 5% series: △R/R=±3.0%

Automotive Grade General Purpose Low Resistance Thick Film Chip Resistors Version. A


/ersion. A			
ltem	Test Method	Acceptable criterion	
Resistance to Solvent	Put the specimens in isopropanol solvent at room temperature 23±5°C for 5 minutes, brush 10 times as a group with a hard toothbrush, 3 times for each group. Then take them out to blow dry, and check their appearance.	No visible damage	
	Reference: AEC-Q200 Test 12, MIL-STD-202 Method 215 Put the specimens in tin furnace at 260^{+5}_{-0} °C for 10^{+1}_{-0} seconds. Then take		
Resistance to Soldering Heat	them out to stabilize for 1 hour, and measure the resistance value change rate. Reference: AEC-Q200 TEST 15, MIL-STD-202 Method 210	$\triangle R/R=\pm 1.0\%$	
	Put the specimens with voltage in test machine, and the voltage shall be set up as following table. Test method: Electro-Static discharges twice which positive and	△R/R=±2.0%	
ESD	negative polarity once each by human body mode. Size 0201 0402, 0603 0805 and above Voltage 500V 1,000V 2,000V Reference: AEC-Q200 Test 17, AEC-Q200-002		
Solderability	Pretreatment: Dry heat +155°C for 4 hours, or with equivalent test method, PCT aging for 4 hours. Then take the specimens out to stabilize at room temperature for 2 hours. Test method: 1. Put the specimens in a tin furnace at 245±3°C for 3 seconds, then take	 Solder coverage must be 95% minimum. Without welding rejection And 	
Solderability	 Put the specifiers in a timulate at 245±5 C for 5 seconds, then take them out and check the soldering appearance by microscope. Reflow soldering test with peak temperature 235°C for 40± 5 seconds. Reference: AEC-Q200 Test 18, J-STD-002, IEC 60115-1 11.1.4.3 IPC-A-610 8.3.2 	 Without welding rejection. And soldering is higher than 1/2 of sid termination height. 	
Electrical Characteriz ation	TCR(ppm/°C)= $\frac{(R_2-R_1)}{R_1 \times (T_2-T_1)} \times 10^6$ R_1 : Resistance value at room temperature (Ω) R_2 : Resistance value at test temperature -55°C or +125°C T_1 : Temperature at room temperature (°C) T_2 : Temperature at -55°C or +125°C	Details in table CHARACTERISTIC	
Board Flex / Bending	Reference: AEC-Q200 Test 19, IEC 60115-1 6.2 Put PCBA mounted with the specimens in test machine, press down the PCBA to standard depth with testing block and stabilize for 60 seconds, then measure the resistance value change rate. Size 0402, 0603, 0805 0201, 1206, 1210 2010, 2512 Depth 5mm 3mm 2mm Reference: AEC-Q200 TEST 21, AEC-Q200-005	△R/R=±1.0%	
Terminal Strength	Apply 1.8Kgf external force on the side of specimen, then check the soldering joint strength. Size 0402 0603 and above Force 1 Kgf. 1.8 Kgf. Reference: AEC Q200-005 0603 and above	No mechanical damage or peel-off of side end	
Short Time Overload	Load 2.5 times of rated voltage or maximum overload voltage whichever is less for 5 seconds. Then measure the resistance value change rate. Reference: IEC 60115-1 8.1.4.2	1% series: △R/R=±1.0%、 5% series: △R/R=±2.0%	
Mechanical shock	Put the specimens in test machine, shocks with half sine wave which acceleration set up as 100g's and each three times in X, Y and Z directions with pulse duration as 6 ms. Reference: AEC-Q200 Test 13, MIL-STD -202 Method 213	△R/R=±1.0%	
Vibration	Put the specimens in test machine, vibrates with 10 to 20Hz frequency which acceleration set up as 5g's, and each 12 times in X, Y and Z directions as a cycle which duration as 20 minutes, totally 36 cycles. Reference: AEC-Q200 Test 14, MIL-STD -202 Method 204	△R/R=±1.0%	
Flammability	Put the specimens in test environment, and burn them for 10 seconds and the flame extinguished within 60 seconds. Reference: AEC-Q200 Test 20, UL-94	V-0 Specimens haven't burn, and the bottom cotton without flame.	
Flame retardancy	Put the specimens mounted on PCB and subjected to voltage from 9.0 to 32.0 VDC (current clamped up to 500A) in 1.0 VDC increments. Each voltage level shall be applied for one hour minimum, or until the specimens is either electrically open of a failure occurs. Reference: AEC-Q200 Test 24, AEC-Q200-001	 A flame duration less than 3.0 seconds. Without explosion A temperature above 350°C sustained for less than 10 seconds 	

Automotive Grade General Purpose Low Resistance Thick Film Chip Resistors


SOLDERING TEMPERATURE

- Recommendation only.
- Please adjust soldering temperature according to the actual condition.

SOLDERING PAD

Resistance value would be lower than nominal value because of joint with soldering material, so designing circuit should adjust the pad size

			Unit: mm
Туре	А	В	С
AG0603	0.8	2.1	0.9
AG0805	1.2	3.0	1.3
AG1206	2.2	4.2	1.6
AG1210	2.2	4.2	2.8
AG2010	3.5	6.1	2.8
AG2512	3.8	8.0	3.5

WORKING ENVIRONMENT

If user intends to use products in special environments or states (including but not limited to the following), it is necessary to approve special characteristics and reliability for the following or other application environments.

- A. High temperature, high moisture.
- B. Near the sea, or corrosive gas, such as Cl_2 , H_2S , NH_3 , SO_2 and NO_2 , etc.
- C. Unverified liquids, such as water, oil, chemical or organic solvent.
- D. Unverified resin or paint to cover products.
- E. Products should be washed with water soluble cleaner even if non cleaning flux.

STORAGE / CARRY CONDITIONS

- A. Temperature: 25±5℃
- B. Humidity: 60±15%RH
- C. Storage life: 2 years, FIFO
- D. Please hold box correct orientation when storing and carrying. It is strictly prohibited to fall or squeeze the box, otherwise the product electrode or body may be damaged.

AG Series Automotive Grade General Purpose Low Resistance Thick Film Chip Resistors

LEGAL DISCLAIMER

GiantOhm and its distributors or agents (hereinafter referred to as GiantOhm) shall not bear any responsibility for any error, inaccuracy or incompleteness contained in any product related information (including but not limited to product specifications, data, pictures, and charts). GiantOhm may change, revise, or improve product related information at any time without prior notice.

GiantOhm makes no commitment, guarantee for the suitability of its products for special purposes or the continuous production of any of its products. To the maximum extent permitted by law, GiantOhm does not assume any of the following responsibilities:

- A. Any liabilities arising from the application or use of any GiantOhm's products.
- B. Any liabilities, including but not limited to the loss of profits or direct damage, indirect damage, special damage, punitive damage, derivative damage or incidental damage caused by or related to GiantOhm's products.
- C. Any implied warranties, including fitness for a particular purpose, non-infringement, and merchantability.

GiantOhm defines this product as a general consumer electronic purpose, which is not applicable to any medical lifesaving or life-sustaining equipment, nor to any application that may cause casualties in case of failure of GiantOhm's products.

Any technical suggestions on product application provided by GiantOhm are provided free of charge. GiantOhm assumes no obligation and responsibility for adopting such technical suggestions and available results, and all risks of adopting such suggestions shall be borne by the buyer. All risks and responsibilities arising from the buyer's use of GiantOhm's products in combination with other materials or raw materials, or in any combination in its manufacturing process, shall be borne by the buyer, regardless of any oral or written technical instructions, suggestions or other requirements given by GiantOhm for the use of the products.

The information provided above is only to explain the product specifications. If the product is not changed, GiantOhm has all the rights to modify the above contents without prior notice, and the product change will be notified to the customer by ECN.

Automotive Grade General Purpose Low Resistance Thick Film Chip Resistors (Version, A

VERSION HISTORY

Version	Date	Change Item(s)	Description
А	2022/11/28	-	First version
			· · · · · · · · · · · · · · · · · · ·
		<u>.</u>	
	·	•	
			· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·	
		·	
	. <u> </u>	·	·
		·	
		·	