AA Series Automotive Grade Anti-Sulfur Wide Terminal Thick Film Chip Resistors Version. C

FEATURE

- AEC-Q200 Compliant
- High stability and reliability
- RoHS complaint
- Superior Anti-Sulfur performance
- MSL class: MSL 1
- Applications:
 - Automotive electronics, such as multimedia entertainment, Vehicle navigation, Audio control unit
 - Electric door and window, electric seat control unit
 - Reversing radar
 - Automotive lighting and control unit
 - Consumer electronics
 - etc.

MANUFACTURER PART NO.

For example: AA0612J100KT5G00-AA0612 ±5% 100KΩ T/R-5000

Series	Size	Tol.	Nominal Resistance Value	PKG	SPQ	Feature	TCR
2 codes	4 codes	1 code	2~5 codes	1 code	1 code	1 code	2 codes
AA	0612	J	100K	Т	5	G	00
Automotive Grade Anti- Sulfur Wide Terminal Thick Film Chip Resistors	0508 0612 1020 1225	F=±1% J=±5%	0R=Jumper(<50mΩ) 1R [⊕] =1Ω 4R7=4.7Ω 4K7 [®] =4.7KΩ 100K=100KΩ 4M7 [®] =4.7MΩ	T=T∕R [⊛]	4=4К 5=5К	G=Std. S=P.C.®	00=Refer to table as below.

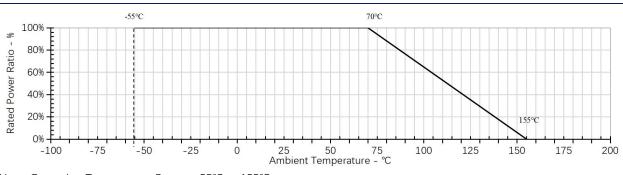
Note: (1) R=Radix, 10^0 , Ω

④ T/R=Taping in Reel packing type

(2) K=Kilo, 10³, KΩ
 (5) P.C.=Personal and Customized.

③ M=Mega, 10⁶, MΩ

CHARACTERISTICS


T	Datad Dower	wer MWV ¹ MOV ² Tolerance		Telerance	TCR PPM/℃	Decistores Decis	Ju	mper(0Ω)	
Туре	Rated Power			Tolerance	ICR PPINI/ C	Resistance Range	Rated Current	MOC ³	Range
					±400 PPM/°C	10Ω			
	1/3W				±200 PPM/°C	10Ω <r≦100ω< td=""><td></td><td></td><td></td></r≦100ω<>			
AA0508		150V	300V	±1%, ±5%	±100 PPM/°C	100Ω <r≦1mω< td=""><td>4A</td><td>8A</td><td>50mΩ Max.</td></r≦1mω<>	4A	8A	50mΩ Max.
	2/3W				±800 PPM/°C	10mΩ≦R<30mΩ			
	2/3//				±400 PPM/°C	30mΩ≦R<10Ω			
	1/2W				±200 PPM/°C	10Ω <r≦100ω< td=""><td></td><td></td><td></td></r≦100ω<>			
AA0612	1/2//	200V	400V	±1%, ±5%	±100 PPM/°C	100Ω <r≦1mω< td=""><td rowspan="2"></td><td rowspan="2">10A</td><td rowspan="3">50mΩ Max.</td></r≦1mω<>		10A	50mΩ Max.
AAUUIZ	1W	200 V			0~+300 PPM/°C	10mΩ≦R<100mΩ			
					±200 PPM/°C	$100m\Omega \leq R \leq 10\Omega$			
				±1%, ±5%	±200 PPM/°C	10Ω <r≦100ω< td=""><td></td><td rowspan="3">12A</td><td rowspan="4">50mΩ Max.</td></r≦100ω<>		12A	50mΩ Max.
		W 200V	400V	±1%, ±5%	±100 PPM/°C	100Ω <r≦1mω< td=""><td></td></r≦1mω<>			
AA1020	1W				±400 PPM/°C	1Ω <r≦10ω< td=""><td>6A</td></r≦10ω<>	6A		
				±1%, ±5%	±800 PPM/°C	10mΩ≤R<30mΩ			
				±170, ±370	±400 PPM/°C	30mΩ≤R≤1Ω			
					±400 PPM/°C	1Ω <r≦10ω< td=""><td></td><td></td><td></td></r≦10ω<>			
	2W				±200 PPM/°C	10Ω <r≦100ω< td=""><td></td><td></td><td></td></r≦100ω<>			
AA1225		200V	400V	±1%, ±5%	±100 PPM/°C	100Ω <r≦1mω< td=""><td>6A</td><td>15A</td><td>50mΩ Max.</td></r≦1mω<>	6A	15A	50mΩ Max.
	3W				±800 PPM/°C	10mΩ≤R<30mΩ			
	500				±400 PPM/°C	30mΩ≤R≤1Ω			
Note:	① MWV=Max	. Working	g Voltage		2 MOV=Ma	x. Overload Voltage	3 MOC=I	Max. Overl	oad Current

AA Series

Automotive Grade Anti-Sulfur Wide Terminal Thick Film Chip Resistors Version. C

POWER DERATING CURVE

Note: Operating Temperature Range: -55℃~+155℃

RATED VOLTAGE

Resistors should have a Rated Voltage DC or AC corresponding to Rated Power which can be calculated by formula as below.

The Rated Voltage of certain resistance value should be the calculated result or Max. Working Voltage of product series whichever less.

Formula:

$$E = \sqrt{P \times R}$$

E=Rated voltage(V) P=Rated power(W) R=Nominal resistance(Ω)

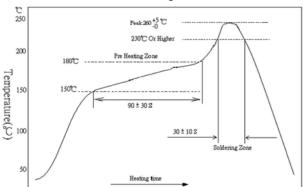
	-					Unit: mm
Figure	Туре	L	W	H	A	B
<u> </u>	AA0508	1.20±0.10	2.0±0.10	0.55±0.10	0.20±0.10	0.30±0.20
	AA0612	1.60±0.15	3.20±0.15	0.55±0.10	0.30±0.20	0.45±0.20
	AA1020	2.50±0.15	5.00±0.15	0.55±0.10	0.40±0.20	0.60±0.20
H	AA1225	3.10±0.15	6.25±0.15	0.55±0.10	0.45±0.20	0.65±0.20

DIMENSIONS

RELIABILITY

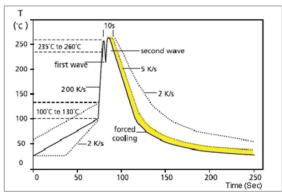
ltem	Test Method	Acceptable Criterion
High Temperature Exposure	+155°C, 1000hrs., unpowered, measure the resistance change rate after test. Reference: AEC-Q200 Test 3, MIL-STD-202 Method 108	1% Series: △R/R=±(1.0%+0.05Ω) 5% Series: △R/R=±(2.0%+0.05Ω) Jumper: <50mΩ
Temperature Cycling	-55~+155°C, soak time 30min, Transition Time :1minute, 1000 cycles Reference: AEC-Q200 Test 4, JESD22 Method JA-104	\triangle R/R=±(1.0%+0.05 Ω) Jumper: <50m Ω
Humidity Bias	85°C, 85%, 10% rated power, 1000H, after the test and stand 24H to measure the change rate of resistance value for components with specified operating voltages higher or equal to500V, 10% of operating voltage. Reference: AEC-Q200 TEST 7, MIL-STD-202 Method 103	1% Series: △R/R=±(2.0%+0.05Ω) 5% Series: △R/R=±(3.0%+0.05Ω) Jumper: <100mΩ
High Temperature Operating Life	maximum specified operating temperature at 100% rated power without derating, 1000H, 90 min ON,30 min OFF Reference: AEC-Q200 Test 8, MIL-STD -202 Method 108	±1% Series: △R/R=±(2.0%+0.05Ω) ±5% Series: △R/R= ±(3.0%+0.05Ω) Jumper: <100mΩ
Resistance to Soldering Heat	Reflow test, time above 217 °C is 60s-150s, time above 250 \pm 5°C is 30 \pm 5s Reference: AEC-Q200 TEST 15, MIL-STD-202 Method 210	Δ R/R=±(1.0%+0.05 Ω) Jumper: <50m Ω

AA Series Automotive Grade Anti-Sulfur Wide Terminal Thick Film Chip Resistors



Version. C		
ltem	Test Method	Acceptable Criterion
Resistance to Solvent	Immerse in isopropanol solvent at room temperature (23±5°C) for 5min, wipe 10 times with a hard toothbrush, repeat 3 times, take out and blow dry for Examination. Reference: AEC-Q200 Test 12, MIL-STD-202 Method 215	No visible damage
ESD	Human body mode, two discharges, positive and negative polarity once each. Size 0508 and above Test Voltage 2000V Reference: AEC-Q200 Test 17, AEC-Q200-002	$\Delta R/R=\pm(2.0\%+0.05\Omega)$ Jumper: <50m Ω
Solderability	Pretreatment: Dry heat 155°C, 4H, after take out, stand at room temperature for 2 hours. Test method B1: Dip the resistance in a tin furnace at 245±5°C for 5 seconds, then take it out and observe the solder area under a microscope; Test method D: 260±5°C, T=30+5/-0s. Reference: AEC-Q200 Test 18, J-STD-002 & IEC 60115-1 11.1.4.3	Soldering coverage over 95% At the edge of terminal, the object underneath (e.g., white ceramic) shall not expose.
Electrical Characterization	TCR(PPM/°C) = $\frac{(R_2 - R_1)}{R1 \times (T_2 - T_1)} \times 10^6$ R_1 : Resistance value at room temperature (Ω) R_2 : Resistance value at test temperature -55°C or +125°C T_1 : Temperature at room temperature (°C) T_2 : Temperature at -55°C or +125°C Reference: AEC-Q200 Test 19,IEC 60115-1 6.2	Details in table CHARACTERISTIC
Board Flex	The SMD resistance was welded to the test board and bent with the standard pressure block. After standing for 60s under the corresponding deformation condition, the change rate of resistance value of the part was tested Size 0508, 0612 1225, 1020 Depth 3mm 2mm Reference: AEC-Q200 TEST 21, AEC-Q200-005	ΔR/R=±(1.0%+0.05Ω) Jumper: <50mΩ
Terminal Strength	Apply 1.8Kgf. external force on the side of the part to test the solder joint adhesion of the part. Reference: AEC Q200-005	No mechanical damage or peel-off of side end
Short Time Overload	Apply 2.5 times rated voltage or maximum overload voltage (whichever is the smallest) for 5 seconds. Reference: IEC 60115-1 8.1.4.2	1% Series: $\Delta R/R=\pm(1.0\%+0.05\Omega)$ 5% Series: $\Delta R/R=\pm(2.0\%+0.05\Omega)$ Jumper: <50mΩ
Mechanical shock	Half sine wave, acceleration 100g's, each three times in X, Y and Z directions, pulse width 6ms. Reference: AEC-Q200 Test 13, MIL-STD -202 Method 213	\triangle R/R=±(1.0%+0.05 Ω) Jumper: <50m Ω
Vibration	Frequency: 10Hz~2000Hz, acceleration: 5g's, X, Y, Z three directions, 12 cycles in each direction, a total of 36 cycles, a single cycle test for 20min. Reference: AEC-Q200 Test 14, MIL-STD -202 Method 204	△R/R=±(1.0%+0.05Ω) Jumper: <50mΩ
Flammability	Protective layer flammability report or component needle flame test report Reference: AEC-Q200 Test 20, UL-94	Do not burn and cotton below do not ignite
Sulfide test	Put the test sample resistor in sulfur vapor, at a temperature of 105±2°C for 750hrs Reference: ASTM-B-809-95&EIA977	\triangle R/R=±(4.0%+0.05 Ω) Jumper: <100m Ω
Flame retardancy	9V∞ to 32V∞ (clamp current 500A) in each increment 1V∞ for 1 hr. Reference: AEC-Q200 Test 24, AEC-Q200-001	 Nonflammable Do not explode The temperature cannot be higher than 350°C for 10 seconds

AA Series	
Automotive Grade Anti-Sulfur Wide Terminal Thick Film Chip Resistors	
SOLDERING	



Lead Free IR Reflow Soldering Profile

- Top temperature should be under 260^{+5}_{-0} °C ,10Sec.
- Reference: J-STD-020D

Lead Free Double-Wave Soldering Profile

• 350±10°C within 3 Sec. if soldering iron.

SOLDERING	PAD

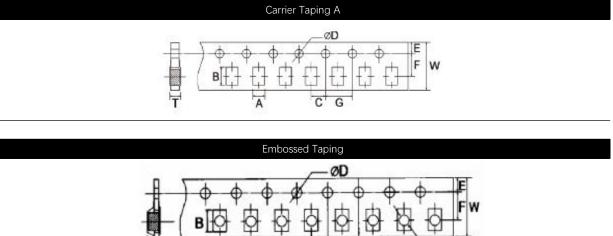
						Unit: mm
•	- A		Туре	А	В	С
			AA0508	0.6	2.2	2.3
С		-	AA0612	0.7	2.6	3.5
			AA1020	0.5	3.5	5.3
1	В	-	AA1225	1.3	4.2	6.4

WORKING ENVIRONMENT

If user intends to use products in special environments or states (including but not limited to the following), it is necessary to approve special characteristics and reliability for the following or other application environments.

- A. Hot temperature.
- B. Near the sea, or corrosive gas, such as CI_2 , H_2S , NH_3 , SO_2 and NO_2 , etc.
- C. Unverified liquids, such as water, oil, chemical or organic solvent.
- D. Unverified resin or paint to cover products.
- E. Products should be washed with water soluble cleaner even if non cleaning flux.

STORAGE / CARRY CONDITIONS


- A. Temperature: 25±5℃
- B. Humidity: 60±15%RH
- C. Storage life: 2 years, FIFO
- D. Please hold box correct orientation when storing and carrying. It is strictly prohibited to fall or squeeze the box, otherwise the product electrode or body may be damaged.

This document is sul	ject to change without notice.	. The products described herein, and this document are subje	ect to specific disclaimers,
set forth at GiantOh	n official website, http://www.g	giantohm.com/download/cid/22.html	
OA-SP-067	Automotive Grade Ant	ti-Sulfur Wide Terminal Thick Film Chip Resistors - AA Series	Page 5 / 8

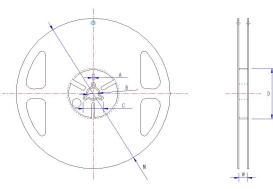
AA Series Automotive Grade Anti-Sulfur Wide Terminal Thick Film Chip Resistors Version. C

TAPING SPECIFICATIONS

A. Taping drawing

B. Taping Dimensions

Туре о	r Size	A±0.2	B±0.2	C±0.05	$ØD_{-0}^{+0.1}$	E±0.1	F±0.05	G±0.1	W±0.2	T±0.1
Carrier Taping	0508	1.65	2.40	2.0	1.5	1.75	3.5	4.0	8.0	0.81
A	0612	1.90	3.45	2.0	1.5	1.75	3.5	4.0	8.0	0.81


Туре о	r Size	A±0.2	B±0.2	C±0.05	$\phi D^{+0.1}_{-0}$	$ØD^{+0.25}_{-0}$	E±0.1	F±0.05	G±0.1	W±0.2	T±0.1
Embossed	1020	2.90	5.60	2.00	1.50	1.50	1.75	5.50	4.00	12.00	1.00
Taping	1225	3.50	6.70	2.00	1.50	1.50	1.75	5.50	4.00	12.00	1.00

STANDARD PACKING

Series	0508	0612	1020	1225
SPQ, PCS/Reel	5,000	5,000	4,000	4,000
Taping material	Carrier	Carrier	Embossed	Embossed

REEL SPECIFICATION

unit: mm

AA Series

Automotive Grade Anti-Sulfur Wide Terminal Thick Film Chip Resistors Version. C

B. Reel dimension

Туре	SPQ PCS/RI.	A±0.5	B±0.5	C±0.5	D±1	M±2	W±1
0508	5,000	2.0	13.0	21.0	60.0	178.0	10.0
0612	5,000	2.0	13.0	21.0	60.0	178.0	10.0
1020	4,000	2.0	13.0	21.0	60.0	178.0	13.8
1225	4,000	2.0	13.0	21.0	60.0	178.0	13.8

LABEL SPECIFICATION

A. Produce Label

B. Customer Label

DES: AA 0612 1/2W 5% 100k	(
CPN:100000746-03	
	RoHS
QTY: 5000 PCS	
D/C:2401	
MPN:AA0612J100KT5G00	
GUCA24011104SYR	antOhm
NO.: A2401040006-0001	R

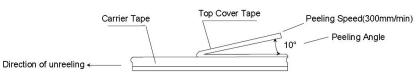
PACKING BOX

A. Packing Type

Taping in reel / Bulk in plastic bag.

B. Inner box

The inner box has several capacities hold 1 reel, 2 reels, 3 reels, 4 reels, 5 reels and 10 reels.


C. Out box

QA-SP-067

The out box has two capacities hold 6- or 8-pieces inner box.

NOTE OF COVER TAPE PEEL OFF

A. Figure of cover tape peel off.

- B. Please keep peeling speed under 300mm per minute.
- C. Please keep the angle between cover tape and direction of unreeling narrower than 10 degree.
- D. There is limit of adhesive force between cover tape and carrier tape or embossed tape shown as following table.

Size of chip resistors	0508 and above	
Adhesive force limit	10~70gf	

AA Series Automotive Grade Anti-Sulfur Wide Terminal Thick Film Chip Resistors

LEGAL DISCLAIMER

GiantOhm and its distributors or agents (hereinafter referred to as GiantOhm) shall not bear any responsibility for any error, inaccuracy or incompleteness contained in any product related information (including but not limited to product specifications, data, pictures, and charts). GiantOhm may change, revise, or improve product related information at any time without prior notice.

GiantOhm makes no commitment, guarantee for the suitability of its products for special purposes or the continuous production of any of its products. To the maximum extent permitted by law, GiantOhm does not assume any of the following responsibilities:

- A. All liabilities arising from the application or use of any GiantOhm's products.
- B. All liabilities, including but not limited to the loss of profits or direct damage, indirect damage, special damage, punitive damage, derivative damage, or incidental damage caused by or related to GiantOhm's products.
- C. All implied warranties, including fitness for a particular purpose, non-infringement, and merchantability.

GiantOhm defines this product as a general consumer electronic purpose, which is not applicable to any medical lifesaving or life-sustaining equipment, nor to any application that may cause casualties in case of failure of GiantOhm's products.

All technical suggestions on product application provided by GiantOhm are provided free of charge. GiantOhm assumes no obligation and responsibility for adopting such technical suggestions and available results, and all risks of adopting such suggestions shall be borne by the buyer. All risks and responsibilities arising from the buyer's use of GiantOhm's products in combination with other materials or raw materials, or in any combination in its manufacturing process, shall be borne by the buyer, regardless of any oral or written technical instructions, suggestions or other requirements given by GiantOhm for the use of the products.

The information provided above is only to explain the product specifications. If the product is not changed, GiantOhm has all the rights to modify the above contents without prior notice, and the product change will be notified to the customer by ECN.

AA Series

Automotive Grade Anti-Sulfur Wide Terminal Thick Film Chip Resistors Version. C

VERSION HISTORY

A 2022/11/29 - First version B 2024/02/01 Full Add Packing Specifications. Add Jumper Description in MPN Add Jumper Test acceptable criterion. Add Moisture sensitivity level description. Add Moisture sensitivity level descriptint. Add Moisture sensitivity le	Version	Date	Change Item(s)	Description
C 2024/07/16 Full Add Packing Specifications Add Jumper Description in MPN Add Jumper test acceptable criterion.	A	2022/11/29		•
C 2024/07/16 Full Add Packing Specifications Add Jumper Description in MPN Add Jumper test acceptable criterion.	В	2024/02/01	Full	Add Packing Specifications.
	С	2024/07/16	Full	Add Packing Specifications Add Jumper Description in MPN Add Jumper test acceptable criterion.